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| think that there’s a world market for about 5 computers.
~Thomas J. Watson, Sr., IBM Chairman of the Board, 1946

= Triodes as they evolved over 40 years of tube
K. L. Wang :
‘ bbb manufacture, from the RE16 in 1918 to a
: = 1960s era miniature tube

\

iy - B T
The ENIAC (Electronic Numerical Integrator,
and Computer) machine occupied a room
30 x 50 ft. (van Pelt Library, U Penn)

In 1946, a group of scientists and engineers at the U. Penn.'s Moore School of Electrical Engineering quietly inaugurated a
revolutionary way of managing information. It gave rise to the modern computer industry and would eventually transform people's

lives to a degree that even its inventors could not have imagined.

The scaling of CMOS is much more aggressive!



& 1897 J.J. Thomson
By | discovery of electron
& | - using properties of
| cathode rays, electron

The cathode ray tube (CRT) is a vacuum tube

What next? Transistor

2007 High k + metal gate on Si f JS; 2010 32 nm, 2012 22 nm,
and 2014 15 nm node. InG~”~ aN 2016-20257?

Mervin Kelly, the t+ a(\‘o _arch at Bell Labs, had predicted the problem

and had already * O.\) d solution.
Although relay ‘ ubes were apparently making all things possible in telephony,

he had predictea years that the low speed of relays and the short life and high power
consumption of tuL — would eventually limit further progress in telephony and other electronic
endeavors.

In the summer of 1945, Kelly had established a research group at Bell Labs to focus on the
understanding of semiconductors. The group also had a long-term goal of creating a solid-
state device that might eventually replace the tube and the relay.

What are the next “Big Innovation(s)”?




In the late 19™, the need to know the essence of electricity was in demand.

__ Therefore, the study in vacuum technology, gas discharge and cathode

ray was intensively studied, and as a consequence electron was
| discovered.
v Interplay among science (materials, physics, chemistry) and technology

. Imnnr-l'nn-l' criontifir nnd torbhnAalanicrnl +Aanicc.
The perfection of SiO,/Si interface has been essential for the success of the

present CMQOS.
B History, Challenges, Opportunities, and Accomplishments

Fundamental requirements for high k’s + metal gates on InGaAs
(or any channels) for ultimate CMOS

EOT < 0.6 nm (every atom counts!)

Interfacial density of states D, <10! cm™2 eV!

Self-aligned process
High-temperature thermodynamic stability
Low parasitic

Ohmic contacts (Schottky barrier heights) and sheet resistance

Integration with Si



Si0,/Si - from the past to the present
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Background leading to unpin surface Fermi level in IlI-V
compound semiconductors at Bell Labs

m Late 1980s to early 1990s, problems in then AT&T’s pump lasers (980 nm)
for undersea optical fiber cable (trans-Atlantic)

m Semiconductor facet (HR, AR) coating
Reducing defects between InGaAs (GaAs) and coating dielectrics

m Electronic passivation much more stringent than optical passivation
(110) vs (100) of InGaAs (GaAs)

m Passivation of the facets

Initial thinking: to attain Ga,0, film for passivation
High-purity single crystal GaISGd3O12 (GGG) source

Gd,Ogionic oxi%je T,, > 4000K | Ga,0; more covafent oxide T, ~ 2000K
Ga,0, evaporated mostly, and formed amorphous Ga,O; film

2-Ga,0,(Gd,0,) Pure Gd,O; Film

................... X'tal Gd203

et ‘.‘\(.Ga,'Gd‘)'z(?s

S i taXY Epitaxy
i eaRs
e Gd/(Ga+Gd) > 20%

Single domain, epitaxial film
in (110) Mn,O4 structure

........................................

Gd*3 stabilize Ga*3



l1I-V Surface Passivation

thermally and electronically stable at high temperatures of >800 °C

. low leakage currents
Requirements

low interface trap density (D,,)
high xvalues = low EOT < 1nm

Early Efforts (19608 - 19903) reviewed by Hong et al, “Encyclopedia of Electrical and Electronics Eng.”,
v. 19, p. 87, Ed. Webster, John Wiley & Sons, 1999

¢ Anodic, thermal, and plasma oxidation of GaAs
& Wet or dry GaAs surface cleaning followed by deposition of various
dielectric materials

15t Breakthrough (1994) Hong, Kwo et al,

« JVST (1996);
> in-situ UHV deposited Ga,04(Gd,0,) [GGO] and Gd,O, (Bell Labs) . Scien(ce (19)99)

Recent Demonstrations * APL (1999)
¢ in-situ UHV deposited high-k’s (NTU/NTHU, Freescale/U. Glasgow, IMEC, UT-Dallas ...)

¢ ex-situ ALD high-k’s (Agere, Purdue U., NTU/NTHU, Intel, IBM, IMEC, UCSB...)
¢ a-Si or Ge interfacial passivation layers (IPLs)+ high-«’'s

(IBM, UT-Dallas, UT-Austin, NUS, U. Albany-SUNY/Intel/SEMATECH ...
¢ in-situ ALD high-k’s (NTU/NTHU, UTD)



Pioneer Work : Single Crystal Gd,O, Films on GaAs

M. Hong, J. Kwo et al, Science Mn,O; Structure

283, p.1897, 1999 (110) (100)
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Single crystal Gd,O; on GaAs - Epitaxial interfacial structure

Not a Mn,O,
structure at
interface
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* “New Phase Formation of Gd,0, films on GaAs (100)”, J. Vac. Sci. Technol. B 19, 1434 (2001).

* “ Direct atomic structure determination of epitaxially grown films: Gd,0, on GaAs(100) ” PRB 66, 205311 (2002)
« A new X-ray method for the direct determination of epitaxial structures, coherent Bragg rod analysis (COBRA)
- Nature - Materials 2002 Oct issue cover paper
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Cover Image & Theme Article — “InGaAs Metal Oxide Semiconductor Devices with
Ga,0,(Gd,0,) High-x Dielectrics for Science and Technology beyond Si CMOS”, M.
Hong, J. Kwo, T. D. Lin, and M. L. Huang, MRS Bulletin 34, 514 July 20009.



Device Scaling — Beyond Si CMOS:

high K, metal gates, and high carrier mobility channel

i Metal gate
1960 Kahng and Atalla, Bell Labs First MOSFET
Polysilicon
Insulator éate High K gate
electrode dielectric
—_— h%lu,“. g —
Current) ’;W Cdrrent
- e Oxide/semiconductor
interface
Semaconductor .
j (smcon) E|eCt UiE. High mobility
Fisidieffact transistar Ohmic Contacts channel

Moore’s Law:

Integration of I1IV, Ge, GaN with Si

The number of transistors per square inch doubles every 18 months

Shorter gate length L
Thinner gate dielectrics t_,

Driving force :

High speed

Low power consumption
High package density



Pioneering work of (In)GaAs MOSFET’s using Ga,0,(Gd,0,) at Bell Labs

1994
O novel oxide Ga,0;(Gd,0,) to effectively passivate GaAs surfaces
1995

OO0 establishment of accumulation and inversion in p- and n-channels in Ga,0;(Gd,0,)-GaAs MOS
diodes with a low D, of 2-3 x 10! cm2eV-1(IEDM)

1996
0 first e-mode GaAs MOSFETs in p- and n-channels with inversion (IEDM)
[0 Thermodynamically stable

1997

O First inversion-channel n-InGaAs/InP MOSFET with g_= 190 mS/mm, Id = 350 mA/mm, and
mobility of 470 cm?2/Vs (DRC, EDL)

1998

0 d-mode GaAs MOSFETs with negligible drain current drift and hysteresis (IEDM)

[0 inversion-channel GaAs MOSFETs with improved drain current (over 100 times)

[0 Dense, uniform microstructures; smooth, atomically sharp interface; low leakage currents
1999

0 GaAs power MOSFET

[0 Single-crystal, single-domain Gd,0, epitaxially grown on GaAs
2000

[0 demonstration of GaAs CMOS inverter



Our major achievements in 2003-2014 in Taiwan

m  High k¥/GaAs(001) (111)A; In, ,Ga, zAs

O

(N I I I I

O

MBE-, MBD- and ALD-oxides: rare-earth oxides, Al,O; and HfO,

Small frequency dispersion for both n- and p-MOSCAPs having symmetrical CVs
Low D, with no mid-gap peak

New phase of Y-doped HfO, (k = 32)

Thermodynamically stable to 950C

Low EOT (CET) with novel phase transformation from hexagonal to monoclinic
Record-high device performances in inversion-channel and D-mode MOSFETs

m  High x/In, ;;Ga, ,,As

O

O
O
O

MBE- and ALD-oxides: rare-earth oxides, Al,O; and HfO,
m breaking the myth that tetra-valence HfO, could not unpin 1lI-V InGaAs

Thermodynamically stable to 850C
Excellent CVs
Record-high device performances in inversion-channel MOSFET

m High x/Ge with no GeO, nor IPLs

O

O
O

Excellent CVs with low D, below 10!! cm-2eV-!(via charge pumping and conductance
method)

Excellent device performance in MOSFETSs
Thermodynamically stable



Our major achievements in 2003-2014

High k/GaN

O
O
O
O
O

Ultra-low CET been achieved with single crystal hexagonal rare-earth oxide on GaN
ALD-oxides

Small dispersion in accumulation of CVs with small hysteresis

First inversion-channel MOSFET with decent electrical characteristics

Record high device performance in D-mode (accumulation) MOSFETs

High k/GaSb

O
O
O
O

Interface free of SbOx

Attainment of decent C-V, J-E (~10-8A/cm?), and small C-V hysteresis (~0.03V) characteristics
Thermally stable up to 500°C

Record high device performance in inversion-channel GaSb MOSFETs

Probing the “true” surface and interface

O
O

Surface structures of (In)GaAs(001) and (111)A surfaces
Atom-by-atom interaction in ALD-oxides on (In)GaAs

Single crystal oxides on Si
[0 Perfection of oxide crystallinity
[0 Template for ZnO and GaN overgrowth
Spintronics
0 Spin pumping from ferromagnetic Fe;Si into n- and p-GaAs
0 Record high inverse spin Hall voltage
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